

Air Vibration Predictor Training Manual

op Level Intro
1 Start the Application
1.1 Air Vibration Architecture5
1.1.1 Menu Bar 6
op Level Intro7
2. General Functions
2.1 Mine Details
2.2 Design Parameters8
2.2.1 Regression Analysis12
2.2.2 Coefficient Values 13
2.2.3 Forced Exponent13
2.2 Sonic Vibration Table
2.3 Sonic Vibration Plot15
2.4 Vibration Limit Table17
2.5 CONTOUR

Top Level Intro

This page is printed before a new top-level chapter starts

1 Start the Application

You can start the Air Vibration software by once logging in from the Mine Excellence Site.

1.1 Air Vibration Architecture

Once you login from the Mineexcellence site, a dashboard will be displayed as shown in figure below.

On Click of Blasting Software link available on the left side of the dashboard you will be redirected to the list of software available in the Mineexcellence as shown in fig.

≡ mmineexcellence					Earth Resource Technology	Logout
Delcome Sushil	Blasting Software	S				
Admin						
🚯 Dashboard	BIMS	FRAGMENTATION PREDICTION	SIMULATION AND ANALYSIS			
a Minelnfo	Blast Information Management System (BIMS)	Fragmentation Prediction	Pattern Simulation and Analysis	Blast Clearance Estimator		
🚔 Profile						
🗗 Our Software	AIR BLAST	GROUND VIBRATION	BLADES			
Blasting Softwares	PREDICTION	PREDICTION	BLAST DESIGNER FOR SUMMACE WHILES			
Learning Tools	Air Blast Prediction	Ground Vibration Prediction	Blast Designer (BLADES)			
Safety Solution						
Social Collaboration						
	All Rights Reserved © 20	016 MineExcellence. Privacy Policy	Terms & Conditions		•	

Air Vibration Predictor Training Manual

On click of Air Vibration Prediction, you will be redirected to Air Vibration Prediction page as shown in figure below.

M	Home	Mine Details Logout	MINE NAME - ABC BLAST NAME - PIT1
	Sonic La	w Generation Sonic Vibration Table Sonic Vibration Plot Vibration Limit Table Contour	
	Sno Cha	rrge Distance Sound Plot Supress Date Monitor g) From Intensity Symbol Blast(m) (dBL)	For generation, fill data in table and Refresh Chart.
	1	Delete	
	A Re	dd Rows Set Delault gression Analysis	
	Co Fo	efficient Values rced Exponent	
	Co	nfidence Interval 95% 99%	
		Kellesh Chart	
		Blasting Predictors & Control Tools 3.	3.0 Developed by Continuous Excellence

1.1.1 Menu Bar

This is top most part of the screen. This bar displays menu items defining the basic functionality of the software. Following are menu items are present in the menu bar:

- 1. Home Redirect user to the Home Page of the website
- 2. Mine Detail Here we can edit the Mine Name and the Blast location
- 3. Logout User can logout by click of this button
- 4. Mine Name Name of the mine
- 5. Blast Name Name of the blast

Top Level Intro

This page is printed before a new top-level chapter starts

2. General Functions

Air Vibration incorporates several functions-

2.1 Mine Details

This function allow user to save mine details which include Mine Name and Blast Location. This information has to be filled as it is needed for generating report. To save mine details, click on Edit Mine details. Once Mine Details are saved, we can close this pop up by clicking simply on Close button.

Mine name	ABC	
Blast location	123	
Edit Mine Detai	ils Close]

2.2 Design Parameters

Following parameters are required to predict the Air Vibration These includes:

- a. Sonic Law Generation- This module is to use the air vibration measurement to generate Sonic Laws for a particular site and to produce graphs for predictions especially for the limiting the blasting nuisances. Inputs are:
- Charge
- Distance From Blast
- Sound Intensity(DBL)
- Plot symbol
- Suppress
- Date
- Monitor

M	Home Mine Details Logout	MINE NAME - ABC BLAST NAME - PIT1
	Sonic Law Generation Sonic Vibration Table Sonic Vibration Plot Vibration Limit Table Contour	
	Sno Charge Distance Sound Plot Supress Date Monitor (Kg) From Intensity Symbol Blast(m) (dBL)	For generation, fill data in table and Refresh Chart.
	1 I Delete	
	Add Rows Set Default	
	Coefficient Values	
	Confidence Interval 95% 99%	
	Refresh Chart	
	Blasting Predictors & Control Tools 3.3.0	Developed by Continuous Excellence

Whenever user click on Sonic Law Generation a page will be displayed as shown below:

The user can use the default parameters by clicking on Set Default button and edit these parameters as per their operational requirement.

M	Home Mine Details Logout	MINE NAME - ABC BLAST NAME - PIT1
	Sonic Law Generation Sonic Vibration Table Sonic Vibration Plot Vibration Limit Table Contour	
	Sno Charge Distance Sound Plot Supress Date Monitor (Kg) From Intensity Symbol Blast(m) (dBL)	For generation, fill data in table and Refresh Chart.
	1 24 01 150 120 * mm/dd/yyyy Delete 2 43.00 215 111.2 * mm/dd/yyyy Delete	
	3 43.00 215 1102 • mm/dd/yyyy Delete	
	Add Rows Set Datault Regression Analysis Coefficient Values	
	Confidence Interval 95% 99%	
	Refresh Chart	
	Blasting Predictors & Control Tools 3	3.0 Developed by Continuous Excellence

If a User wants to add rows he can add the same by clicking simply on ADD ROWS button, as shown:

M	Home	Mine Details Logout	MINE NAME - ABC BLAST NAME - PIT1
	Sonic La	Law Generation Sonic Vibration Table Sonic Vibration Plot Vibration Limit Table Contour	
	Sno Ch (i	harge Distance Sound Plot Supress Date Monitor (Kg) From Intensity Symbol Blast(m) (dBL)	For generation, fill data in table and Refresh Chart.
	9 4	40.00 162 119.2 * 📄 mm/dd/yyyy 📝 Delete 🕇	
	10 4	40.00 291 112.8 • mm/dd/yyyy 2 Delete	
		mm/aa/yyyy Delete	
	_	Add Rows Set Default	
		Regression Analysis Coefficient Values	
	□F(Forced Exponent	
	C	confidence Interval 95% 99%	
		Refresh Chart	
		Blasting Predictors & Control Tools 3	30 Developed by Continuous Excellence

For deleting any row, click on delete button.

After clicking on Refresh Chart button, the result will be displayed in the graph format. In which x-axis defines the Scaled Distance (m/square root kg) and y axis will show the Velocity (mm/s).

On clicking print chart button, chart will be display.

Mmineexcellence

2.2.1 Regression Analysis

Regression Analysis check box is provided. When user check the regression analysis check box and click on refresh chart button, chart will be displayed.

In the graph, x-axis defines the Scaled Distance (in m/cube root kg) and y axis will show the Velocity (in dBL).

2.2.2 Coefficient Values

Coefficient values check box is provided. When user check the Coefficient values check box and click on refresh chart button, chart will be displayed.

M	Home	Mine Details Logout	MINE NAME - ABC BLAST NAME - PIT1
P	Home Sonic La Sno Ch (1 2 4 3 4 2 4	Mine Details Logout ave Generation Sonic Vibration Table Sonic Vibration Plot Vibration Limit Table Contour arge Distance Sound Plot Supress Date Monitor Intensity Symbol Blast(m) (dBL) 401 150 120 3.00 215 111.2 3.00 215 110.2 3.00 215 110.2 Md Rows Set Default	MINE NAME - ABC BLAST NAME - PITI EXPONENT: -1.101 CONSTANT: 1.179 CORRELATION COEFFICIENT: -0.63 Image: State of the state of
	R	egression Analysis Defficient Values Dored Exponent Infidence Interval 95% 99% Refresh Chart	Trint Chart
		Blasting Predictors & Control Tools 3.	3.0 Developed by Continuous Excellence

2.2.3 Forced Exponent

When user check the forced exponent check box, a text box will appear in front of it and that should have negative value. After clicking on refresh chart button, chart will be displayed as shown.

no Charge Distance Sound Plot Supress Date Monitor (Kg) From Intensity Symbol Blast(m) (dBL)			
1 24.01 150 120 • mm/dd/yyyy	Delete		
3 43.00 215 1102 * mm/dd/yyyy	Delete		
Add Rows Set Default	В		
Coefficient Values		···· · ·	
General Confidence Interval 95% 99%	100 10	100 Scaled Distance(m/cube root kg)	1000
Balanda Ghant	Print Chart		
Reliesh Chart			

In the graph, x-axis defines the Scaled Distance (in m/cube root kg) and y axis will show the Sound Intensity (in dBL).

2.2 Sonic Vibration Table

- Sonic Law Exponent
- Sonic Law Constant
- Range

On click of Display button, result will be displayed in the Table format. A user can use the default parameters by clicking on Set Default button and edit these parameters as per their operational requirement. User can select either high range or low range. If user select low range and click on display button result will be displayed for that of Low Range.

Sonic Law Constant -1.101 Sonic Law Constant 1.179 High Range Low Range Diploy 15 Jissi Jis	
Sonic Law Exponent 1.101 Sonic Law Constant 1.179 High Range Low Range Deplay Deplay	Distance
Sonic Law Constant 1.101 Sonic Law Constant 1.179 *High Range Low Range Display Display	<u>Istance</u>
Sonic Law Constant 1.179 • High Range • Low Range Display • Migh Range • Josplay • Migh Range • Display • Migh Range • Display • Migh Range • Display • Display • Migh Range • Display • Display • Display • Display • Display • Display • Display • Display • Display <th>2000 5000 10000</th>	2000 5000 10000
OMIL Law Column 1,179 •• High Range •• Low Range Display Display •• PHigh Range •• Low Range Display Display Display Pint Table Pint Table	78.31 69.54 62.91
•High Range Low Range Display •Initial Range Low Range Display •Initial Range Low Range Display •Initial Range Low Range Display •Initial Range Low Range •Initial Range Low Range Display Display •Initial Range Low Range •Initial Range List At 138:1 124:41 107:49 109:87 101:49:47 103:12:19:64 100:98:71 101:49:47 103:12:19:64 100:98:71 11:07:11:10:47:10:71 11:1:1:1:10:71:11:10:71:10:71 11:1:1:1:10:71:10:71:10:71:10:71 11:1:1:1:10:71:10:71:10:71:10:71:10:1:10:10:10:10:10:10:10:10:10:10:10:	80.51 71.75 65.12
•High Range •Low Range Display 1 140.02 133.39 126.76 118 111.37 104.74 95.98 89.35 8 Display Display Display 141.31 134.68 120.92 114.29 100.03 97.27 90.64 1 142.94 136.31 129.68 102.92 14.29 100.87 101.1 94.47 1 142.94 136.31 129.68 120.92 14.29 100.87 101.1 94.47 109.87 101.1 94.47 109.87 101.1 94.47 133.18 124.41 117.79 111.16 102.39 95.77 148.64 142.01 135.38 126.62 119.99 113.36 104.4 97.97 115 148.64 142.01 135.38 126.62 119.99 113.36 104.6 97.97 12.64 12 148.64 142.01 135.38 126.62 119.99 113.36 104.6 97.97 12.44 14 147.85 104.64 142.01 135.38 16	81.8 73.04 66.41
• High Range • Low Range Display 141.31 134.68 123.05 119.29 112.66 106.03 97.27 90.64 8 Display 15 145.14 136.51 131.89 123.12 106.66 98.9 92.27 5 1 145.14 138.51 131.89 123.12 106.49 99.9 92.57 5 1 145.14 139.81 133.18 124.41 17.79 111.16 102.39 95.77 5 1 147.35 140.72 134.04 125.33 118.7 112.07 103.31 66.66 15 148.64 142.01 135.38 126.62 119.99 113.36 104.6 97.97 9 I 42.3	82.72 73.96 67.33
Display Dis	84.01 75.25 68.62
Fig. 14:14 133, 18 124, 11 17, 19 11, 16 102, 39 15, 78 12, 11 14:40 12, 39 11, 13, 18 124, 11 17, 79 11, 16 102, 39 15, 78 12 10 14:35 140, 72 134, 09 125, 33 118, 7 112, 07 103, 19 66 8 2 148, 64 142, 01 135, 38 126, 62 119, 99 113, 36 104, 6 97, 97 5 13 148, 64 142, 01 135, 38 126, 62 119, 99 113, 36 104, 6 97, 97 5 12 12 123	85.04 70.88 70.25
147.35 140.72 134.09 125.33 118.7 112.07 103.19 56.65 1 15 148.64 142.01 135.38 126.62 119.99 113.36 104.6 97.97 1 15 148.64 142.01 135.38 126.62 119.99 113.36 104.6 97.97 1 15 148.64 142.01 135.38 126.62 119.99 113.36 104.6 97.97 1 15 148.64 142.01 135.38 126.62 119.99 113.36 104.6 97.97 1 15 148.64 142.01 135.38 126.62 119.99 113.36 104.6 97.97 1 12 13 126.20 119.99 113.36 104.6 97.97 1 1 12.3 12.3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	87.85 79.08 72.45
15 148.64 142.01 135.38 126.62 119.99 113.36 104.6 97.97 5 12.3 Print Table	90.05 81.29 74.66
123 Print Table	91.34 82.58 75.95
Print Table	
PrintTable	
Print Table	
PrintTable	
PrintTable	
Blasting Predictors & Control Tools 3.3.0 Developed by Continuous Excellence	

M	Home				MINE	NAME	ABC	BL	AST NA	ME-P	IT1						
	Sonic La	w Generation Sonic	Vibration Table Sonic Vibration F	Plot Vibration Limit Table Conto	ur <u>De</u>	etermin	ation o	f Sound	l Intens	ity(dB	L) base	ed on C	harge	and Di	<u>stance</u>		
											Distanc	e(m)					
	So	nic Law Exponent	-1.101				0.5	1	2	5	10	20	50	100	200	500	1000
	So	nic Law Constant	1 179			0.025	150.29	143.66	137.03	128.27	121.64	115.01	106.25	99.62	92.99	84.23	77.6
			1.179		Î	0.05	152.5	145.87	139.24	130.48	123.85	117.22	108.46	101.83	95.2	86.44	79.81
						0.075	153.79	147.16	140.53	131.77	125.14	118.51	109.75	103.12	96.49	87.73	81.1
					(kg)	0.1	154.71	148.08	141.45	132.69	126.06	119.43	110.67	104.04	97.41	88.65	82.02
	⊖High	Range Elow Rate	ange		8	0.15	156	149.37	142.74	133.98	127.35	120.72	111.96	105.33	98.7	89.94	83.31
			Display		÷	0.25	157.62	150.99	144.37	135.0	128.97	122.35	115.58	100.95	100.33	91.50	84.93
						0.5	161 12	153.2	147.86	137.81	132.47	124.55	117.08	110.45	102.55	95.06	88.43
					•	1	162.04	155.41	148.78	140.02	133.39	126.76	118	111.37	104.74	95.98	89.35
						1.5	163.33	156.7	150.07	141.31	134.68	128.05	119.29	112.66	106.03	97.27	90.64
											1 2	3					
																-	
					Prin	nt Table											
				Blasting Predictors & Control T	ools 3.3.0 Develop	oed by Co											

2.3 Sonic Vibration Plot

- Sonic Law Exponent
- Sonic Law Constant
- Range

M	Home	Mine Detailis Logout	MINE NAME - ABC BLAST NAME - PIT1
	Sonic La So So ® High	w Generation Sonic Vibration Table Sonic Vibration Plot Vibration Limit Table Contour hic Law Exponent 1.101 hic Law Constant 1.179 Range CLow Range Display	<figure></figure>
		Blasting Predictors & Control Tools 3	30 Developed by Continuous Excellence

On click of Display button, the results will be displayed in the graph format, in which x-axis define the Charge Weight per Delay (in kg) and y axis will shows the Distance (in meters). The user can use the default parameters and edit these parameters as per their operational requirement. User can select either high range or low range.

M	Home	Mine Details Logout	MINE NAME - ABC BLAST NAME - PIT1
	Sonic La So So High	w Generation Sonic Vibration Table Sonic Vibration Plot Vibration Limit Table Contour nic Law Exponent 1.101 nic Law Constant 1.173 Arange @Low Range Display	<figure></figure>
		Blasting Predictors & Control Tools 3	3.0 Developed by Continuous Excellence

2.4 Vibration Limit Table

- Sonic Law Exponent
- Sonic Law Constant
- Sound Intensity Level
- Sound Intensity Units

Home Mine Details Logout	MINE NAME - ABC BLAST NAME - PIT1				
Sonic Law Generation Sonic Vibration Table Sonic Vibration Plot Vibration Limit Table Contour	Vibration Limit Table				
Sonic Law Exponent -1.101	Distance(m) Charge(kg)				
Sonic Law Constant 1 179	10 0				
	20 0				
Sound Intensity Level 2 Pa	30 0				
Occurred before alter blacks	50 0				
Sound Intensity Units	70 0.01				
	100 0.03				
®Pa UdBL	150 0.1				
	200 0.23				
Display	12				
	Print Table				
elassing relations & control holds 3-3-30 developed by Continuous Excemence					

The user can use the default parameters and edit these parameters as per their operational requirement. User can select Pa(unit in Pascal) or dBL as per there operational requirement.

M	Home Mine Details Logout	MINE NAME - ABC BLAST NAME - PIT1		
	Sonic Law Generation Sonic Vibration Table Sonic Vibration Plot Vibration Limit Table Contour Sonic Law Exponent 1.101 Sonic Law Constant 1.179 Sound Intensity Level 2 DBL Pa @dBL Diplay	Vibration Limit Table Distance(m) Charge(kg) 10 0 15 0 30 0 50 0 70 0 150 0 </th		
Blasting Predictors & Control Tools 3.3.0 Developed by Continuous Excellence				

2.5 CONTOUR

- Exponent
- Constant
- No. of Contour
- dBl Minimum
- dBl Increment
- Charge(kg)
- Reduction in dB
- +dB Front
- +dB Rear

The user can use the default parameters as per their operational requirement and have the facility to edit the same.

